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Smearing of the Coulomb Blockade by Resonant Tunneling
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We study the Coulomb blockade in a grain coupled to a lead via a resonant impurity level. We show
that the strong energy dependence of the transmission coefficient through the impurity level can have
a dramatic effect on the quantization of the grain charge. In particular, if the resonance is sufficiently
narrow, the Coulomb staircase shows very sharp steps even if the transmission through the impurity at
the Fermi energy is perfect. This is in contrast to the naive expectation that perfect transmission should
completely smear charging effects.

PACS numbers: 73.23.Hk, 73.40.Gk
The charge on an isolated metallic grain is quantized in
units of the electron charge e. Even if the grain is weakly
coupled to an electrode, so that electrons can occasionally
hop from the electrode to the grain and back, the charge
on the grain still remains to a large extent quantized. This
phenomenon, known as Coulomb blockade, has in recent
years been widely investigated, both theoretically and ex-
perimentally [1–3]. One quantity of interest is the average
charge on the grain as a function of the voltage applied
to a nearby gate. For a very weakly coupled grain this
function shows very sharp steps, the so-called Coulomb
staircase. As has been shown in recent experiments [4,5],
the charge on such a grain can be directly measured using
a single electron transistor that is capacitively coupled to
the grain. The reason for the charge on the grain to be
quantized is that it costs a finite energy EC � e2�2C to
charge the capacitance C formed by the grain and its en-
vironment. Charge quantization effects therefore become
visible as soon as the temperature T is lowered below EC .
From now on we assume that the temperature is zero.

As the coupling of the grain to the lead is made stronger
and stronger, the sharp steps of the Coulomb staircase are
more and more smeared out. One usually assumes that
all features of charge quantization completely disappear as
soon as the coupling of the grain to the lead is via a per-
fectly transmissive channel [6–8]. However, this is the
case only if the transmission probability from lead to grain
is unity in an energy interval much broader than the charg-
ing energy EC around the Fermi energy. We will show
below that perfect transmission in a narrow energy interval
is not sufficient to effectively smear out charging effects.
We study a model where perfect transmission is achieved
using a resonant impurity level connecting the grain to the
lead. The transmission probability through such a resonant
impurity level is strongly energy dependent and is charac-
terized by the width G of the resonance. Embedding the
level between sufficiently high tunneling barriers can give
a small G ø EC . In this regime, one can achieve perfect
transmission between the grain and the lead at the Fermi
level and still have a nearly perfectly sharp Coulomb stair-
case. As the resonance is made wider, the sharp steps of
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the Coulomb staircase start to be smeared out and will
eventually disappear at G ¿ EC .

The experimental setup we have in mind could, e.g., be a
metallic grain, separated from a massive electrode by a thin
insulating layer containing resonant impurity states near
the Fermi level. Another possibility would be a double
quantum dot system, where one of the dots is considerably
smaller than the other (Fig. 1). The level spacing in the
small dot then exceeds by far the charging energy of the
larger one, so that the small dot can be occupied only by
zero or one electron. The small dot plays then the role
of the impurity. The advantage of this setup is that by
tuning the gate voltages the barrier heights between the
two dots and the lead can be adjusted. In addition, the
effective energy of the impurity can be shifted by a gate
which couples only to the small dot.

The model we consider is described by the following
Hamiltonian:

H � H0 1 Hli 1 Hig . (1)

Here the Hamiltonian H0 describes the lead, the impurity,
and the grain,

FIG. 1. A possible experimental setup using a GaAs hetero-
structure. The small quantum dot plays the role of the impu-
rity level, and the larger dot represents the grain. The charge
Q of the large dot is controlled by the gate voltage Vg. The
voltages Va and Vb control the heights of the barriers between
the dots and the lead and thus the width of the resonance.
© 2000 The American Physical Society
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and the coupling of the impurity to the other two electrodes
is described by the tunneling Hamiltonians

Hli �
X
ks

�tka
y
ksas 1 H.c.� , (3)

Hig �
X
ps

�tpay
psas 1 H.c.� . (4)

Here aks , as , and aps are the annihilation operators for
electrons of spin s in the lead, the impurity, and the grain,
respectively. The operator n̂ �

P
�ay

psaps 2 �ay
psaps�0�

counts the number of electrons on the grain relative to its
expectation value for the uncoupled system. The parameter
N is proportional to the gate voltage Vg, namely, N �
CgVg�e, where Cg is the capacitance between the grain
and the gate electrode. In this model we neglected the
interaction of electrons on the impurity site. We will later
include a strong Coulomb repulsion on the impurity.

In the absence of tunneling, Hli � Hig � 0, the charge
�Q� on the grain is a multiple of the electron charge e, and
thus is perfectly quantized. We will now investigate how
the coupling via the impurity level affects the charge quan-
tization on the grain. We assume that the coupling of the
impurity to the grain is weak, so that it is sufficient to treat
Hig in perturbation theory. We can then take advantage of
the fact that the system of an impurity coupled to a lead is
noninteracting, and can therefore be easily solved exactly.
Let j0� denote the ground state of the Hamiltonian (1) with
Hig � 0. The first order correction jdc� to j0� is

jdc� � 2i
Z 0

2`
dt Hig�t� j0� , (5)

where Hig�t� is the time evolution of the coupling taken in
the interaction representation. The expectation value of the
charge on the dot is then to second order in the coupling
to the impurity

�Q� � 2e
X
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jtpj
2
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dt1
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s�t2�as�t1�� �aps�t2�ay
ps�t1��� , (6)

where the averages are taken over the ground state of the
uncoupled system. The Green’s functions of the isolated
grain can be calculated easily:

�ay
ps�t2�aps�t1�� � u�2ep�ei�ep2U21� �t22t1�,

�aps�t2�ay
ps�t1�� � u�ep�e2i�ep1U1� �t22t1�.

The Green’s functions of the noninteracting impurity/lead
system can be found by solving their equations of motion:
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Using these relations, the integrals in Eq. (6) can be
evaluated and yield
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In this result we have five independent energy scales,
namely, the couplings Gg � p

P
p jtpj

2d�ep� and Gl �
p

P
k jtkj

2d�ek�, the energy e of the impurity, and,
finally, the Coulomb energies U21 � EC�1 1 2N� and
U1 � EC�1 2 2N�, which have to be paid if an electron
is removed from or added to the grain, respectively. We
assume the energy spectrum in the lead as well as in the
grain to be continuous. This implies that the grain is suf-
ficiently large, so that the level spacing D is much smaller
than all other relevant energy scales, D ø Gl,g, U61. In
this regime, the mesoscopic fluctuations of the coupling
elements tp will naturally average out in the expression
for Gg.

Let us now discuss this result. Clearly, the charge smear-
ing is linear in Gg, since we treated the coupling Hig only
to second order. The coupling Hli has been accounted for
to all orders. Note that even if Gl � 0, i.e., the lead is de-
coupled from the rest of the system, the charge smearing
does not vanish,

�Q� � 72e
Gg

p

1
U71 6 e

, (8)

where the top and bottom signs correspond to positive
and negative e, respectively. This result can, of course, be
easily obtained by performing a second-order perturbation
theory with respect to Hig in a system decoupled from the
lead, Hli � 0. Clearly, the processes of multiple tunneling
between the impurity and the grain result in corrections
which are small in the parameter Gg�U71. Therefore
the lowest-order perturbation theory in Hig employed
in the derivation of Eqs. (8) and (7) is applicable away
from the degeneracy points, i.e., at Gg ø U61.

As a next step, we investigate how the charge smearing
is affected by the coupling to the lead, assuming now that
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both couplings Gl and Gg are finite. Let us first consider
the case where the impurity level is far above the Fermi
surface; i.e., we assume that e ¿ Gl,g, U61. Then Eq. (7)
can be simplified to

�Q� � 22e
Gg

p

1
e

1 2e
GgGl

p2e2 ln
U21

U1
. (9)

The first term on the right-hand side coincides with Eq. (8)
in the limit of large e and is only due to the escape of elec-
trons from the grain to the impurity. The second term is due
to the transfer of electrons from the grain to the lead and
is equivalent to the lowest-order result for charge smear-
ing for a grain coupled to a lead via a tunneling barrier
[9]. Comparing Eq. (9) with the result of Ref. [9], we find
that charge smearing by tunneling via the impurity level
is equivalent to that caused by tunneling through an effec-
tive barrier with the conductance G � �e2�p h̄�4GgGl�e2.
Naturally, this is exactly the conductance through the im-
purity in the limit of large e.

As in the case of a simple tunneling barrier [9,10], the
perturbative result diverges if one of the charging energies,
U1 or U21, approaches zero. The exact form of the charge
smearing around the degeneracy points can be studied by
mapping the system onto a 2-channel Kondo problem [10].

Equation (7) is particularly interesting in the regime
where the impurity level is near resonance, e � G. As-
suming that the gate voltage is sufficiently far from the
degeneracy points, i.e., e, Gl,g ø U61, we can write Eq.
(7) in the following compact form:

�Q� � e
Gg

p

Ω
n�e�
U1

2
2 2 n�e�

U21

æ
, (10)

with the occupation of the impurity n�e� � 1 2

�2�p� arctan�e�Gl�. Since U1 and U21 are of the order
of EC , it is clear from this equation that for a narrow
resonance the charge smearing is very small, of the order
Gg�EC ø 1. This is the case even if the impurity level is
on resonance, e � 0 and Gl � Gg, when the transmission
at the Fermi energy is perfect, T �EF� � 1. Physically,
this result can be understood in the following way: in
order to effectively smear out charging effects, the grain
has to be perfectly coupled to the lead over an energy
interval DE ¿ EC around the Fermi energy. However, in
the case of resonant coupling, the transmission probability
is strongly energy dependent. A resonant impurity level
of width G ø EC leads to perfect transmission only in
the very narrow interval DE � G. The transmission at
all other energies essentially vanishes. To our knowledge,
all previous work, that predicted charging effects to
completely disappear as soon as there is at least one
perfectly transmitting channel coupling the grain to a
lead, assumed that the coupling is energy independent
on the scale of EC [7,8]. Our result clearly shows that a
possible energy dependence in the coupling of the grain
to the lead can have a dramatic effect on the shape of the
Coulomb staircase.
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In Fig. 2 the smearing of one step of the Coulomb stair-
case is shown for different values of the impurity energy e.
It is clearly visible that even at e � 0 the sharp Coulomb
blockade step is only smeared out very little due to the
narrow resonance, G ø EC . At N � 0 the slope of the
Coulomb staircase with e � 0 is the same as the one found
for a grain coupled through a tunneling barrier of effective
conductance G � �e2�h̄�2Gg�EC to the lead. Therefore,
away from the degeneracy points, a narrow resonant im-
purity level acts similarly to a poorly conducting tunneling
barrier as far as charge smearing is concerned. However,
if we approach a degeneracy point, e.g., U1 ø �Gl 1 Gg�,
the smearing due to a resonant level is very different from
the case of a tunneling barrier. At small U1, the coupling
of the grain to the lead, in fact, is strong, and thus the exact
shape of the step of the staircase will differ considerably
from the one found in [10]. Finding the exact shape of
the step is a difficult task, which lies beyond the scope of
this paper.

As the energy of the impurity is increased, the step of
the staircase is pushed downwards, because the virtual pro-
cesses of electron tunneling from the grain onto the impu-
rity become more likely than processes where an electron
from the partially occupied impurity tunnels onto the grain.
However, in the limit of very large e, hopping on the im-
purity becomes energetically more and more costly, so that
the step moves back up again. This is illustrated in Fig. 3,
where the charge on the grain is drawn for different fixed
values of the gate voltage N as a function of the impurity
energy e. As the energy of the impurity crosses zero, the
average charge makes an abrupt change from a positive
to a negative value. The width of this jump is De � Gl .
As can be seen from Eq. (10), measuring the average

FIG. 2. The smearing of the Coulomb staircase, Eq. (7), for
different values of e�EC . The coupling strengths have been
chosen to be Gl � Gg � 0.1EC . Drawn is the charge �Q� on
the grain in units of the electron charge e as a function of the
dimensionless gate voltage N . The divergences at the degener-
acy points N � 60.5 indicate the breakdown of the perturbative
result at these points. Note the good quantization of the charge
of the grain for 20.4 , N , 0.4, even if the impurity is on
resonance (solid line).
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FIG. 3. The charge on the grain in units of e as a function of
e�EC for different values of the gate voltage N . The couplings
are Gl � Gg � 0.1EC .

charge on the grain as a function of the impurity energy
e in this transition region is a direct measurement of the
occupation n�e�.

Up to now we neglected the interaction of the elec-
trons on the impurity. However, if in an experiment the
impurity level is replaced by a second quantum dot in a
heterostructure as suggested in the introduction, Fig. 1, it
has to be much smaller than the large quantum dot, so that
its charging energy U greatly exceeds the charging energy
EC of the dot. We will show now that a very similar
result as Eq. (10) is also obtained if we include the
strong Hubbard repulsion of the electrons on the impu-
rity in our Hamiltonian. We add the following term to
the Hamiltonian:

HU � Un̂"n̂# , (11)

with U being a very large energy, U ¿ EC , and n̂s �
ay

sas . The strong on-site Coulomb repulsion will now
prohibit double occupation of the impurity level. To find
the average charge on the grain, we can proceed with the
so-modified Hamiltonian and rederive Eq. (6). Now the
impurity Green’s functions in Eq. (6) are nontrivial, be-
cause the Hamiltonian includes the on-site interaction (11).
We consider a regime where the Coulomb energies U1 and
U21 are much larger then e. The Green’s function of the
impurity, �ay

s�t�as�0��, varies on a time scale t � 1�e,
whereas the Green’s functions �ay

ps�t�aps�0�� vary on the
much shorter time scale t � 1�U21. We can therefore as-
sume that the Green’s function of the impurity is roughly
constant in the relevant range of integration over t1 and
t2, and is given by n�e� �

P
s�ay

sas�. The integrals in
Eq. (6) can then be carried out, and we arrive at the same
result as Eq. (10), except that in the presence of interac-
tions on the impurity n�e� is the occupation of the impurity
in the Anderson model H0 1 Hli 1 HU . As can be seen
from Eq. (10) and Fig. 3, the measurement of the charge
on the grain can be used to determine the occupation n�e�
of the Anderson impurity.

In this paper we have studied the influence on the
Coulomb blockade of a strong energy dependence of the
coupling of a grain to its environment. The example we
investigated was a grain, which was coupled to a lead
via a resonant impurity level. Charge smearing by this
coupling has two origins: first, the sole presence of a
nearby impurity can already smear the charge on the grain
even without any coupling to the lead. The second reason
for charge smearing is due to transfer of electrons from
the grain over the impurity to the lead. We showed that a
narrow resonance, G ø EC , is not sufficient to effectively
smear out charging effects. It is worth noting that our
result is not related to the phenomenon of mesoscopic
charge quantization [11], which results in small Coulomb
blockade oscillations in a perfectly coupled small quantum
dot. Unlike Ref. [11], our Coulomb blockade oscillations
can be large, and they do not disappear in the limit of
vanishing level spacing in the dot. We also showed
that the charge on the grain can be used to measure the
occupation of the impurity; see Eq. (10). The easiest way
to experimentally verify our prediction is probably to use
a double dot system in a semiconductor heterostructure,
where one of the dots plays the role of the impurity, Fig. 1.

The authors are grateful to D. Esteve for a stimulat-
ing discussion. T. G. acknowledges support from the
Swiss National Science Foundation. K. M. acknowledges
support by the A. P. Sloan Foundation and NSF Grant
No. DMR-9974435.

[1] D. V. Averin and K. K. Likharev, in Mesoscopic Phenomena
in Solids, edited by B. Altshuler, P. A. Lee, and R. A. Webb
(Elsevier, Amsterdam, 1991).

[2] Single Charge Tunneling, edited by H. Grabert and
M. H. Devoret (Plenum Press, New York, 1992).

[3] L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen,
S. Tarucha, R. M. Westervelt, and N. S. Wingreen, in
Mesoscopic Electron Transport, edited by L. L. Sohn,
L. P. Kouwenhoven, and G. Schön (Kluwer, Dordrecht,
1997).

[4] P. Lafarge, P. Joyez, D. Esteve, C. Urbina, and
M. H. Devoret, Nature (London) 365, 422 (1993).

[5] D. Berman, N. B. Zhitenev, R. C. Ashoori, and M.
Shayegan, Phys. Rev. Lett. 82, 161 (1999).

[6] N. C. van der Vaart, A. T. Johnson, L. P. Kouwenhoven,
D. J. Maas, W. de Jong, M. P. de Ruyter van Steveninck,
A. van der Enden, C. J. P. M. Harmans, and C. T. Foxon,
Physica (Amsterdam) 189B, 99 (1993).

[7] K. A. Matveev, Phys. Rev. B 51, 1743 (1995).
[8] Yu. V. Nazarov, Phys. Rev. Lett. 82, 1245 (1999).
[9] L. I. Glazman and K. A. Matveev, Sov. Phys. JETP 71, 1031

(1990).
[10] K. A. Matveev, Sov. Phys. JETP 72, 892 (1991).
[11] I. L. Aleiner and L. I. Glazman, Phys. Rev. B 57, 9608

(1998).
4585


